IDENTIFICATION OF PLANT GROWTH PROMOTING ANTAGONISTIC BACTERIA AGAINST BLAST DISEASE OF RICE

  • M.M. Haque Plant Pathology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    M.K. Hasna Plant Pathology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    M.I. Khalil Plant Pathology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    K.M.E. Nabi Plant Pathology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    J. Ferthouse Plant Pathology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    N.R. Paul Plant Pathology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    S.K. Sarker Plant Pathology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

Abstract

This study aimed to isolate and identify plant growth-promoting bacteria from rhizosphere of rice plants that exhibit antagonistic properties against Magnaporthe oryzae, the causal agent of blast disease. Bacteria were isolated from the surface of rice leaves, stems, and soil attached to the roots. The antagonistic activity of the isolated bacteria was assessed using a dual culture method, and identities were determined through 16S rDNA sequencing. To evaluate their growth-promoting abilities, assays were conducted to measure indole acetic acid (IAA) production, siderophore secretion, hydrogen cyanide (HCN) production, and phosphate solubilization. The results revealed that Bacillus subtilis, identified as BDISO_01R, exhibited antagonistic behavior and the maximum inhibition of M. oryzae (81.00%) was obtained by bacterial isolate BDISO-01R. Additionally, eight bacterial isolates demonstrated IAA production, sixteen isolates produced siderophores, and nine isolates displayed phosphate solubilization capability. This research sheds light on the diverse microbial arsenal that can potentially promote rice growth while combating blast disease.

References

Ahmad, F., Ahmad I and Khan M.S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173-181.

Alexander, D.B. and Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils 12:   39-45. doi: 10.1007/bf00369386.

Aslanta, S.R., Çakmakçi, R. and Sahin, F. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia Horticulturae 111:371-377. doi: 10.1016/j.scienta.2006.12.016.

Azman, N., Sijam, K., Hata, E., Othman, R. and Saud, H. 2017. Screening of bacteria as antagonist against Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of paddy and as plant growth promoter. Journal of Experimental Agriculture International 16:1-15. doi: 10.9734/jeai/2017/33697.

Babalola, O.O. 2010. Beneficial bacteria of agricultural importance. Biotechnology Letters 32:1559–1570. doi: 10.1007/s10529-010-0347-0.

Bakker, A.W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil Biol Biochem 19: 451-457.

Bakker, P.A., Pieterse, C.M., and van Loon, L.C. 2012. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 94(11), 1308-1314.

Bardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M. and Nicot, P.C. 2015. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science 6. doi: 10.3389/ fpls.2015.00566.

BBS. 2017. Yearbook of Agricultural Statistics (29th series). Bangladesh Bureau of statistics. Statistics and Informatics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh.

Beneduzi, A., Ambrosini, A. and Passaglia, L.M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology 35:1044-1051. doi: 10.1590/s1415-47572012000600020.

Berendsen, R.L., Pieterse, C.M. and Bakker, P.A. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486.

Cakmakci, R., Dönmez M.F. and Erdo ˘gan, Ü. 2007. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture and Forestry 31:189-199.

Chen, Z., Zhao, L., Dong, Y., Chen, W., Li, C., Gao, X. and Xu, Z. 2021. The antagonistic mechanism of Bacillus velezensis ZW10 against rice blast disease: Evaluation of ZW10 as a potential biopesticide. Plos one16(8), e0256807.

Compant, S., Duffy, B., Nowak, J., Clément, C. and Barka, E.A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951-4959.

Crowley, D.E. 2006. Microbial siderophores in the plant rhizosphere. In: Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer Netherlands. p. 169-198. doi: 10.1007/1-4020- 4743-6_8.

Devi, K., Nidhi, S., Shalini, K. and David, K. 2007. Hydrogen cyanide producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54: 74-78.

Devi, K.K., Seth, N., Kothamasi, S. and Kothamasi, D. 2007. Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in Vitro Conditions. Curr. Microbiol. 54, 74-78.

Fakir, G.A. 2000. Seed Pathology Laboratory. Bangladesh Agricultural University, Mymensingh, Bangladesh. An Annotated List of Seedborne Disease in Bangladesh.

Fankem, H., TChakounte, G., Nkot, L., Mafokoua, H., Dondjou, D., Simo, C., Nwaga, D. and Etoa, F.X.  2015. Common bean (Phaseolus vulgaris L.) and soyabean (Glycine max) growth and nodulation as influenced by rock phosphate solubilising bacteria under pot grown conditions. International Journal of Agricultural Policy and Research 5:242-250.

Giovannoni, S.J. 1991. The polymerase chain reaction in Nucleic Acid Techniques in Bacterial Systematics Stackebrandt E. Goodfellow M., Eds) pp 177-203 John Wiley and Sons, Chichester.

Gordon, S.A. and Weber, R.P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiology 26:192-195. doi: 10.1104/pp.26.1.192.

Gusain, Y.S., Kamal, R., Mehta, C.M., Singh, U.S. and Sharma, A.K. 2015. Phosphate solubilizing and indole3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. Journal of environmental biology 36:301-307.

Hariprasad, P., Navya, H., Nayaka, S.C. and Niranjana, S. 2009. Advantage of using PSIRB over PSRB and IRB to improve plant health of tomato. Biological Control 50:307–316. doi: 10.1016/j.biocontrol.2009.04.002.

Hossain, M., Ali, M.A., and Hossain, M.D. 2017. Occurrence of blast disease in rice in Bangladesh. American Journal of Agricultural Science4(4), 74-80.

             https://blast.ncbi.nlm.nih.gov/Blast.cgi

Janda, J.M. and Abbott, S.L. 2007. 16s rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology 45:2761–2764. doi: 10.1128/jcm.01228-07.

Jha, Y. and Subramanian, R.B. 2011. Endophytic Pseudomonas pseudoalcaligenes shows better response against the Magnaporthe grisea than a rhizospheric Bacillus pumilus in Oryza sativa (Rice). Archives of Phytopathology and Plant Protection44(6),   592-604.

Jones, J.D. and Dangl, J.L. 2006. The plant immune system. Nature, 444(7117), 323-329.

Kato, H. (2001). Rice blast disease. Pesticide outlook12(1), 23-25.

Khan, M.S., Zaidi, A. and Ahmad, E. 2018. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In Microorganisms for Green Revolution (pp. 93-109). Springer.

Khush, G.S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology 59:1-6. doi: 10.1007/s11103-005-2159-5.

Kloepper, J.W., Lifshitz, R. and Zablotowicz, R.M. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology 7:39-44. doi: 10.1016/0167-7799(89)90057-7.

Kremer, R.J., and Souissi, T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43, 182-186. doi: 10.1007/ s002840010284

Kremer, R.J. and Souissi, T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43: 182-186.

Kumar, K.V.K., Yellareddygari, S.K., Reddy, M.S., Kloepper, J., Lawrence, K.S., Zhou, X.G., Sudini, H., Groth, D., Raju, S.K. and Miller, M. 2012. Efficacy of Bacillus subtilis MBI 600 against sheath blight caused by Rhizoctonia solani and on growth and yield of rice. Rice Science 19:55-63. doi: 10.1016/s1672-6308(12)60021-3.

Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiol. Plant., 1:142-146.

Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556.

Manninen, M. and Mattila-Sandholm, T. 1994. Methods for the detection of Pseudomonas siderophores. J Microbiol Meth 19: 223-234.

Manninen, M. and Mattila-Sandholm, T. 1994. Methods for the detection of Pseudomonas siderophores. Journal of Microbiological Methods 19:223-234. doi:10.1016/0167-7012(94)90073-6.

Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J.H. and Bakker, P.A. 2013. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 339(6121), 10-1126.

Miller, M. and Marvin, J. 2008. Siderophores (microbial iron chelators) and siderophore-drug conjugates (new methods for microbially selective drug delivery). University of Notre Dame.

Monteiro, L., de Lima Ramos Mariano, R. and Souto-Maior, A.M. 2005. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Brazilian Archives of Biology and Technology 48:23-29. doi: 10.1590/s1516-89132005000100004.

Nagarajkumar, M., Bhaskaran, R. and Velazhahan, R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiological Research159(1), 73-81.

Nelson, L.M. 2004. Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. cm 3. doi: 10.1094/cm-2004-0301-05-rv.

Okon, Y. and Labandera-Gonzalez, C.A. 1994. Improving Plant Productivity with Rhizosphere Bacteria. Commonwealth Scientific and Industrial Research Organization, Adelaide, Australia. Agronomic Applications of Azospirillum.

Oteino, N., Lally, R.D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K.J. and Dowling, D.N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6:745. doi: 10.3389/fmicb. 2015.00745.

Patel, J. 2001. 16s rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis 6:313-321. doi: 10.1054/modi.2001.29158.

Patten, C.L. and Glick, B.R. 1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology 42:207-220. doi: 10.1139/m.

Patten, C.L. and Glick, B.R. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology 68:3795-3801. doi: 10.1128/aem.68.8.3795-3801.2002.

Rahman M., Navarro P.C., Kuhn I., Huys G. and Swings J.M.R. 2010 Identification and characterization of pathogenic Aeromonas veronii biovar sobria associated with epizootic ulcerative syndrome in fish in Bangladesh. Appl Environ Microbiol. 68(2): 650–655.

Ranjbariyan, A.R., Shams-Ghahfarokhi, M., Kalantari, S. and Razzaghi-Abyaneh, M. 2011. Molecular identification of antagonistic bacteria from Tehran soils and evaluation of their inhibitory activities toward pathogenic fungi. Iranian journal of microbiology 3:140-146.

Salim, M., Akram, M., Akhtar, M.E. and Ashraf, M. 2003. Rice, a production handbook, balanced fertilization for maximizing economic crop yields. Pakistan Agricultural Research Council 2.

Scavino, A.F. and Pedraza, R.O. 2013. The role of siderophores in plant growth-promoting bacteria. In: Bacteria in Agrobiology: Crop Productivity. Springer Berlin Heidelberg. p. 265–285. doi: 10.1007/978-3-642-37241-4_11.

Schenk, P.M., Carvalhais, L.C. and Kazan, K. 2012. Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends in Biotechnology 30:177-184. doi: 10.1016/j.tibtech.2011.11.002

Shanthi, A.T. and Vittal, R.R. 2013. Biocontrol potentials of plant growth promoting rhizobacteria against Fusarium wilt disease of cucurbit. ESci Journal of Plant Pathology 2:156-161.

Suprapta, D.N., Khalimi, K. and Darmadi, A.A.K. 2016. Molecular identification of local plant growth promoting rhizobacteria that act as resistance inducing agent against rice blast disease. Journal of Current Research in Science4(1), 1.

Thakuria, D., Talukdar, N., Goswami, C., Hazarika, S., Boro, R. and Khan, M. 2004. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science:978-985.

Verma, V.C., Singh, S.K. and Prakash, S. 2011. Biocontrol and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indicaa. juss. Journal of Basic Microbiology 51:550-556. doi: 10.1002/jobm.201000155.

Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571-586.

Vincent, J.M. 1947. Distortion of fungal hyphae in the presence of certain inhibitors. Nature 159:850-850. doi: 10.1038/159850b0.

Whipps, J.M. 2001. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52:487-511. doi: 10.1093/jxb/52.suppl_1.487.

Woese, C.R. 1987. Bacterial evolution. Microbiological Reviews, 51(2), 221-271.

Wu, S.C., Cao, Z.H., Li, Z.G., Cheung, K.C. and Wong, M.H. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and A M fungi on maize growth: a greenhouse trial. Geoderma 125:155-166. doi: 10.1016/j.geoderma.2004.07.003.

Xu, Y., Li, W., Zhao, L., and Li, J. 2019. Inhibition of Magnaporthe oryzae and promotion of rice growth by antagonistic actinomycetes isolated from rhizosphere soil of wheat (Triticum aestivum L.). Frontiers in Microbiology, 10, 1767.

Yasmin, S., Hafeez, F.Y., Mirza, M.S., Rasul, M., Arshad, H.M.I., Zubair, M. and Iqbal, M. 2017. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by Rhizospheric Pseudomonas aeruginosa BRp3. Frontiers in Microbiology 8:1895. doi: 10.3389/fmicb.2017.01895

Yazdani, M., Bahmanyar, M.A., Pirdashti, H. and Esmaili, M.A. 2009. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Academy of Science, Engineering and Technology 49:90-92.

Yu, X., Ai, C., Xin, L. and Zhou, G. 2011. The siderophore producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology 47:138-145. doi:10.1016/j.ejsobi.2010.11. 001.

Section
Research Article