SELECTION OF SESAME MUTANTS FOR HIGHER YIELD AND YIELD CONTRIBUTING TRAITS THROUGH GAMMA RAY IRRADIATION (Short communication)

  • M.K. Khatun Plant Breeding division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    R.M. Emon Plant Breeding division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    M.S.H. Bhuiyan Plant Breeding division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    M.A. Malek Plant Breeding division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    S.A. Mahmud Plant Breeding division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

Abstract

The experiment was conducted to observe their performance regarding seed yield and yield attributes, and to select promising mutant(s) having higher seed yield with shorter maturity periods. Five mutants along with the mother variety and one check variety were evaluated following a randomized complete block design with three replications at three sesame growing areas of Bangladesh during Kharif-I, 2017. Analysis of variance showed highly significant variations among the mutants and checks for most of the characters in individual locations and combined over locations. The mutant SM-07 produced the highest seed yield (1522 kg ha-1) at each location with taller plants and the shortest maturity period. The heatmap and correlation matrix showed a significant positive correlation among the no. of branch plant-1, no. of pod plant-1, and the seed yield. Considering mean seed yield over locations, three mutants viz., SM-07, SM-06 and SM-04 produced higher seed yield (1522, 1483 ,and 1461 kg ha-1, respectively) with took short days (83-85 days) to maturity. These three mutants need to be further zonal evaluation for conformity of their performance.

References

Acquaah, G. 2012. Principles of plant genetics and breeding, 2nd edn| Wiley.

Ahmad, M., Khan, M.A., Zafar, M., and Sultana, S. 2009. Environment-friendly renewable energy from sesame biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects32(2), 189-196.

Ali, N.A.A.Z.A.R., Javidfar, F., and Attary, A.A. 2002. Genetic variability, correlation and path analysis of yield and its components in winter rapeseed (Brassica napus L.). Pakistan Journal of Botany (Pakistan).

Ashri, A. 1988. Sesame breeding-objectives and approaches. Oil Crops: Sunflower, Linseed and Sesame. International Development Research Center (IDRC), Ottawa, Canada, 157-164.

BBS, 2021. Summary Crop Statistics Area, Yield Rates and Productions of Minor Crops 2020-21. Bangladesh Bureau of Statistics, Ministry of Planning, Government of the People’s Republic of Bangladesh. pp:1.

Bedigian, D., and Harlan, J.R. 1986. Evidence for cultivation of sesame in the ancient world. Economic botany40, 137-154.

Begum, T., and Dasgupta, T. 2014. NDUCED GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN SESAME (Sesamum indicum L.). SABRAO Journal of Breeding & Genetics46(1).

Begum, T., and Dasgupta, T. 2015. Amelioration of seed yield, oil content and oil quality through induced mutagenesis in sesame (Sesamum indicum L.). Bangladesh Journal of Botany44(1), 15-22.

Chowdhury, S., Datta, A.K., Saha, A., and Maity, S. 2009. Radiation-induced two oil rich mutants in sesame (Sesamum indicum L.). Indian Journal of Science and Technology2(7), 51-59.

Elbadri, G.A., and Yassin, A.M. 2010. 12 Sesame’s Protective Role in Crop Nematode Control. Sesame: The genus Sesamum, 211.

Emon, R.M., Sakib, M.N., Khatun, M.K., Malek, M.A., Haque, M.S., and Alam, M.A. 2023. Microsatellite marker assisted molecular and morpho-physiological genetic diversity assessment in 38 genotypes of sesame (Sesamum indicum L.). Journal of Phytology15, 43-51.

Ghulam, S., Haq, M.A., Chaudhry, M.B., and Rabbani, I. 2008. Evaluation of early and high yielding mutants of sesame (Sesamum indicum L.) for different genetic parameters. JOURNAL OF AGRICULTURAL RESEARCH (Pakistan).

Gomez, K.A., and Gomez, A.A. 1984. Statistical procedures for agricultural research. John wiley & sons.

Hasan, M., Seyis, F.A.T.İ.H., Badani, A.G., Pons-Kühnemann, J., Friedt, W., Lühs, W., and Snowdon, R. J. 2006. Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genetic Resources and Crop Evolution53, 793-802.

Javed, M.A., Siddiqui, M.A., Khan, M.K.R., Khatri, A., Khan, I.A., Dahar, N.A.,  and Khan, R. 2003. Development of high yielding mutants of Brassica campestris L. cv. Toria selection through gamma rays irradiation. Asian Journal of Plant Sciences2.

Kang, C.W., Roh, J.H., Lee, S.W., Park, C.B., Lee, J.I., Lee, S.T. and Kim, W.S. 1998. A high oil, linoleic fatty acid content and yielding new sesame mutant variety" Yangbaeckkae". RDA Journal of Industrial Crop Science.

Khatri, A.B.D.U.L.L.A.H., Khan, I.A., Siddiqui, M.A., Raza, S.A.B.O.O.H.I., and Nizamani, G.S. 2005. Evaluation of high yielding mutants of Brassica juncea cv. S-9 developed through gamma rays and EMS. Pakistan journal of botany37(2), 279.

Mahmud, F., Rasul, M.G., and Rahim, M.A. 2008. Genetic diversity analysis in some advanced lines of Brassica napus. Sci. Asia34, 432-434.

Malek, M.A. 2020. Binatil-2: a gamma rays induced mutant variety of sesame. Bangladesh Journal of Nuclear Agriculture 33 & 34: 151-158.

Malek, M.A., Begum, H.A., Begum, M., Sattar, M.A., Ismail, M.R., and Rafii, M.Y. 2012. Development of two high yielding mutant varieties of mustard ['Brassica juncea'(L.) Czern.] through gamma rays irradiation. Australian Journal of crop science6(5), 922-927.

Malek, M.A., Emon, R.M., Khatun, M.K., Bhuiyan, M.S.H., Nevame, A.Y.M. and Alam, M.A. 2022. Binasoybean-6: a high yielding mutant soybean variety developed through sustainable mutation breeding. Legume Research-An International Journal45(2), 143-148.

Malek, M.A., Ismail, M.R., Monshi, F.I., Mondal, M.M.A. and Alam, M.N. 2012. Selection of promising rapeseed mutants through multi-location trials. Bangladesh Journal of Botany41(1), 111-114.

Malek, M.A., Rafii, M.Y., and Khatun, M.K. 2016. Selection of rapeseed mutants for higher yield and yield contributing traits. Journal of the Bangladesh agricultural university14(2), 141-146.

Malek, M.A., Rafii, M.Y., Afroz, S.S., Nath, U.K., and Mondal, M. 2014. Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants. The Scientific World Journal2014.

Morris, J.B. 2002. Food, industrial, nutraceutical, and pharmaceutical uses of sesame genetic resources. In Trends in new crops and new uses. Proceedings of the Fifth National Symposium, Atlanta, Georgia, USA, 10-13 November, 2001 (pp. 153-156). ASHS Press.

Najeeb, U., Mirza, M.Y., Jilani, G., Mubashir, A.K. and Zhou, W.J. 2012. Sesame. Technological Innovations in Major World Oil Crops, Volume 1: Breeding, 131-145.

Ong'Injo, E. O. and Ayiecho, P. O. 2009. Genotypic variability in sesame mutant lines in Kenya. African crop science journal17(2).

Raikwar, R.S. and Srivastva, P. 2013. Productivity enhancement of sesame (Sesamum indicum L.) through improved production technologies. African Journal of Agricultural Research8(47), 6073-6078.

Savant, K.D. and Kothekar, V.S. 2011. Induction of variability in fatty acid profile in sesame (Sesamum indicum L.). Journal of Phytology3(12), 01-03.

Shah, S.A. and Rahman, K. 2009. Yield and growth response of rapeseed (Brassica napus L.) mutants to different seeding rates and sowing dates. Pak. J. Bot., 41(6): 2711–2716.

Shah, S.S., Ali, I. and Rehman, K. 1990. Induction and selection of superior genetic variables of oil seed rape (Brassica napus L.). Nucleus27.

Venkataramana Bhat, K., Babrekar, P.P. and Lakhanpaul, S. 1999. Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica110, 21-34.

Section
Research Article