CLAY MINERALS IDENTIFICATION BY X-RAY POWDER DIFFRACTION NEAR A MINING SITE, MALAYSIA

  • K.S. Arefin Electronics and Health Physics, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

    M.M.H. Sohag Electronics and Health Physics, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202

Abstract

The soil samples collected from an agricultural region near the Sungai Chalit mine site in Raub, Pahang, Malaysia were subjected to X-ray powder diffraction (XRPD) analysis for the first time. The PanAnalytikX’pert Pro XRD equipment at the XRD laboratory, Material Technology, Nuclear Malaysia, was used to identify the clay minerals present in the samples. After thorough analysis of all samples, it has been determined that microcline is found in every sample, whereas bytownite has been detected in just three unique samples (DS2, DS15, and DS17). Two discrete variants of zeolite were discerned in two specimens, denoted as DS2 and DS17. Sample DS6 contains kaolinite. Sample C13 comprises four clay minerals: microcline, anorthite, birnessite, and tremolite. The occurrence of microcline in soil signifies the erosion of rocks abundant in feldspar, such as granite, resulting in a reduction of essential minerals like potassium and calcium. This depletion has the potential to affect plant nutrition and crop yield.

References

Ali, A., Chiang, Y. W., & Santos, R. M. 2022. X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals, 12(2), 205.

Allen, F.H., Bergerhoff, G. and Sievers, R. 1987. Crystallographic Databases. International Union of Crystallography, Chester, UK.

Allen, F. H. 1998. The development, status and scientific impact of crystallographic databases. Acta Cryst., A54: 758-771.

Arefin, K.S., Hassan MM. ,Bhuiya, S.H., Sultana, N. and  Murshidi, J. A. B. 2018. Soil elements characterization by X-ray fluorescence. Bangladesh J. Environ. Sci. 34, 19-26.

Bell, T. (n.d.). 2023. Understanding and Managing Soil Microbes. https://extension.psu.edu/understanding-and-managing-soil-microbes (visited on 25 october, 2023)

Belsky, A., Hellenbrandt, M., Karen, V. L., and Luksch, P. 2002. “New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design”, ActaCrystallogr. B 58: 364–369.

Bergaya, F. and Lagaly, G. 2006. General introduction: clays, clay minerals, and clay science. Developments in Clay Science 1: 1-18.

Bish, D. L. and Howard, S. A. 1988. Quantitative phase analysis using the rietveld method. Journal of Applied Crystallography, 21(2): 86-91.

Bish, D. L. and Chipera, S. J. 1994. Accuracy in quantitative X-ray powder diffraction analyses. Advances in X-ray Analysis 38: 47-57.

Brindley, G.. 1980. Quantitative X-ray mineral analysis of clays. In: Brindley, G.W., Brown, G. (Eds.), Crystal structures of clay minerals and their X-ray Identification, (1st Ed)Mineralogical Society, London, : 411-438 (Chapter 7).

Chipera, S. J. and Bish, D. L. 2013. Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases. Advances in Materials Physics and Chemistry, 03(01): 47–53. https://doi.org/10.4236/ampc.2013.31a007.

Clark, G. L. and Reynolds, D. H. 1936. Quantitative analysis of mine dusts: an X-ray diffraction method. Industrial & Engineering Chemistry Analytical Edition, 8(1): 36-40.

Degen, T., Sadki, M., Bron, E., König, U. and Nénert, G. 2014. The highscore suite. Powder Diffraction, 29(S2): S13-S18. doi:10.1017/S0885715614000840.

Downs, R. T. and Hall-Wallace, M. 2003. The American mineralogist crystal structure database. Am. Mineral. 88: 247–250.

Fan, M., Yuan, P., Zhu, J., Chen, T., Yuan, A., He, H. and Liu, D. 2009. Core–shell structured iron nanoparticles well dispersed on montmorillonite. Journal of Magnetism and Magnetic Materials. 321(20): 3515-3519.

Garrels, R.M. and Mackenzie. F.T. 1971 Evolution of sedimentary rocks. New York: Norton.

Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. T., Quiros, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. 2009. Crystallography open database – an open-access collection of crystal structures. J. Appl. Crystallogr. 42: 726–729.

Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T. and LeBail, A. 2012. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 40. D420–D427.

He, H., Ma, Y., Zhu, J., Yuan, P. and Qing, Y. 2010. Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science. 48(1-2): 67-72.

Hillier, S. 1999. Use of an air brush to spray dry samples for X-ray powder diffraction. Clay Miner. 34: 127-135.

Hillier, S. 2000. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay minerals. 35(1): 291-302.

ICDD PDF-4+ 2014. edited by Dr. SooryaKabekkodu, International Centre for Diffraction Data, Newtown Square, PA, USA.

Keya, D. R., Salih, H. O., Omar, Z. Z., & Said, I. A. 2023. Preliminary Study on Soil Mineral Identification in Erbil Province‎: Polytechnic Journal, 13(2), 6

Lippmann, F. 1970. Functions describing preferred orientation in flat aggregates of flake-like clay minerals and in other axially symmetric fabrics. Contrib. Mineral. Petrol. 25, 77-94.

Liu, D., Yuan, P., Liu, H., Cai, J., Qin, Z., Tan, D. and Zhu, J. 2011. Influence of heating on the solid acidity of montmorillonite: a combined study by DRIFT and Hammett indicators. Applied Clay Science. 52(4): 358-363.

Liu, M., Liu, R. and Chen, W. 2013. Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosensors and Bioelectronics. 45: 206-212.

Moore, D.M. and Reynolds, R.C. 1997. X-ray diffraction and the identification and analysis of clay minerals, second ed. Oxford University Press, Oxford.

Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A. and MacKenzie, K. J. 2006. Solid acidity of 2: 1 type clay minerals activated by selective leaching. Applied Clay Science. 31(3-4): 185-193.

Rietveld, H. M. 1967. Line profiles of neutron powder-diffraction peaks for structure refinement. ActaCrystallogr. 22: 151–152.

Rietveld, H. M. 1969. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71.

Ruan, C. D. and Ward, C. R. 2002, August. Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using rietveld methods. Applied Clay Science. 21(5–6): 227–240. https://doi.org/10.1016/s0169-1317(01)00103-x

Salma, E., Algouti, A., Algouti, A., & Soukaina, B. Petrographic and mineralogical study of the beach rocks of Souiria Laqdima coast, Morocco.

Środoń, J. 2002. Quantitative mineralogy of sedimentary rocks with emphasis on clays and with applications to K-Ar dating. Mineralogical Magazine. 66(5): 677-687.

Środoń, J. 2013. Identification and quantitative analysis of clay minerals. Developments in Clay Science. 5: 25-49.

Srodon, J., Drits, V. A., McCarty, D. K., Hsieh, J. C. and Eberl, D. D. 2001. Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays and Clay Minerals. 49(6): 514-528.

Środoń, J. and McCarty, D. K. 2008. Surface area and layer charge of smectite from CEC and EGME/H2O-retention measurements. Clays and Clay Minerals. 56(2): 155-174.

Taylor, J. C. 1978. Report AAEC/E436. Lucas Heights Research Laboratories, Menai, NSW, Australia.

Villars, P., Berndt, M., Brandenburg, K., Cenzual, K., Daams, J., Hulliger, F., Massalski, T., Okamoto, H., Osaki, K., Prince, A., Putz, H., and Iwata, S. 2004. The Pauling file, binaries edition, J. Alloys Compd. 367: 293– 297.

Villars, P., Cenzual, K., Daams, J. L. C., Hulliger, F., Massalski, T. B., Okamoto, H., Osaki, K., Prince, A., and Iwata, S. (Eds.) 2002. Pauling File, binaries ed. (ASM International, Materials Park).

Wasel, S. O., & Albadran, B. N. 2023. Mineralogy and Geochemistry of Coastal Sabkha Deposits Along Yakhtul Coast, Red Sea, Yemen:  Iraqi National Journal of Earth Science.

Weaver, C. E. and Pollard, L. D. 1975. The chemistry of clay minerals; Elsevier Scientific Publishing Company. Amsterdam. 213.

Yuan, P., Fan, M., Yang, D., He, H., Liu, D., Yuan, A., and Chen, T. 2009. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr (VI)] from aqueous solutions. Journal of hazardous materials. 166(2-3): 821-829.

Yuan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Liu, D., and Liu, Z. 2013. From platy kaolinite to aluminosilicatenanoroll via one-step delamination of kaolinite: effect of the temperature of intercalation. Applied Clay Science. 83: 68-76.

Zhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., Du, P. and Song, H. 2018, March. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences, 3(1). 16–29.  https://doi.org/10.1016/j.sesci.2017.12.002.

Zwell, L., and Danko, A. W. 1975. Applications of X-ray diffraction methods to quantitative chemical analysis. Applied Spectroscopy Reviews. 9(1). 167-221.

Section
Research Article