ASSESSMENT OF GROUNDNUT GENETIC DIVERSITY THROUGH DUS DESCRIPTOR
Abstract
This study evaluated 33 groundnut (Arachis hypogaea L.) genotypes based on Distinctness, Uniformity, and Stability (DUS) guidelines using morphological traits. Significant variations were observed in key agronomic characteristics. Plant height ranged from 10.01 cm to 36.02 cm, with ICGV-5268 being the tallest. Plant width varied between 15.00 cm and 41.20 cm. Leaflet traits showed diversity, with Khenkhon having the longest leaflet (49.70 mm) and ICGV-93389 the widest (28.33 mm). Pod and seed dimensions also varied, with ICGV-1352 had the longest pods (36.70 mm) and ICGV-4514 the longest seed size (13.33 mm). Pod yield per plant ranged from 14.33 g to 48.86 g, with ISD-1314 exhibiting the highest yield potential. Qualitative traits indicated differences in growth habit, branching pattern, pigmentation, and leaflet morphology. Most germplasm displayed an erect growth habit (57.58%), while 30.30% were decumbent-3 type. Leaflet shape and margin characteristics further differentiated the genotypes. Cluster analysis grouped the genotypes into two main clusters, revealing genetic diversity. ICGV-5268, ISD-1314 and ICGV-4514 emerged as promising candidates for breeding due to their superior plant vigor, seed size, and yield potential. These findings highlight their importance as valuable genetic resources for groundnut improvement and breeding strategies.
References
Anothai, J., Patanothai, A., Jogloy, S., Pannangpetch, K., Boote, K.J. and Hoogenboom, G. 2008. A sequential approach for determining the cultivar coefficients of groundnut lines using end-of-season data of crop performance trials. Field Crops Res. 108:169-178.
Bhad, P.G., Mondal, S. and Badigannavar A.M. 2016. Genetic diversity in groundnut (Arachis hypogaea L.) genotypes and detection of marker trait associations for plant habit and seed size using genomic and genic SSRs. J. Crop Sci. Biotechnol. 19: 203-221.
BBS (Bangladesh Bureau of Statistics). 2023. Yearbook of Agricultural Statistics, Ministry of Planning Government of the People’s Republic of Bangladesh, Dhaka.
Daudi, H., Shimelis, H., Mathew, I., Oteng-Frimpong, R., Ojiewo, C. and Varshney, R.K. 2021. Genetic diversity and population structure of groundnut (Arachis hypogaea L.) accessions using phenotypic traits and SSR markers: Implications for rust resistance breeding. Genet. Resour. Crop Evol. 68(2):581–604.
Gulluoglu, L., Bakal, H., Onat, B., Sabagh, A.E. and Arioglu, H. 2016. Characterization of groundnut (Arachis hypogaea L.) seed oil and fatty acids composition under different growing season under Mediterranean environment. J. Exp. Biol. Agric. Sci. 4(5): 564–571.
Gupta, S.K., Baek, J., Carrasquilla-Garcia, N. and Penmetsa, R.V. 2015. Genome-wide polymorphism detection in groundnut using next-generation restriction-site-associated DNA (RAD) sequencing. Mol. Breed. 35:145.
IPGRI, IITA, BAMNET. 2000. Descriptors for bambara groundnut (Vigna subterranea) (Vol. 57). International Plant Genetic Resources Institute, Rome, Italy; International Institute of Tropical Agriculture, Ibadan, Nigeria; The International Bambara Groundnut Network, Germany. ISBN 92-9043-461-9.
Jahan, M., Sarker, J.R., Burman, P. and Barman, L.R. 2022. Groundnut production performance based on chemical fertilizer practices and its profitability conditions. Int. J. Agric. Res. Innov. Technol. 12(2):126-133.
Janila, P., Variath, MT., Pandey, M.K., Desmae, H., Motagi, BN., Okori, P., Manohar, S.S., Rathnakumar, A.L., Radhakrishnan, T., Liao, B. and Varshney, R.K. 2016. Genomic Tools in Groundnut Breeding Program: Status and Perspectives. Front Plant Sci. 17(7):289.
Karthikeyan, A. R., Ezhilkumar, S. and Karthikeyan, P. 2023. Characterization of groundnut (Arachis hypogaea L.) varieties as per DUS guidelines. Ecol. Environ. Conserv. 29(2):758-762.
Khedikar, Y.P., Gowda, M.V.C., Sarvamangala, C., Patgar, K.V., Upadhyaya, H.D. and Varshney, R.K. 2010. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding in peanut. Theor. Appl. Genet. 121(5):971-984.
Krapovickas, A. and Gregory, W.C. 2007. Taxonomy of the genus Arachis (Leguminosae). Bonplandia 16(1):1-205.
Motagi, B.N., Bhat, R.S., Pujer, S., Nayak, S.N., Janila, P., Pandey, M.K., Varshney, R. K., Bera, S.K., Pal, K.K., Mondal, S., Badigannavar, A.M., Nagaraju, P., Yenagi, B.S., Sugandhi, R.S., Nimbal, A., Goudar, I., Roopa, U., Nadaf, H.L. and Gowda, M.V.C. 2022. Genetic Enhancement of Groundnut: Current Status and Future Prospects. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 4. Springer, Cham. https://doi.org/10.1007/978-3-030-81107-5_3.
Nigam, S.N. 2014. Groundnut at a glance. Patancheru, India: Int. Crops Res. Inst. Semi-Arid Trop. (ICRISAT).
Pandey, M.K., Monyo, E., Ozias-Akins, P., Liang, X., Guimarães, P., Nigam, S.N., Upadhyaya, H.D., Janila, P., Zhang, X., Guo, B., Cook, D.R., Bertioli, D.J., Michelmore, R. and Varshney, R.K. 2012. Advances in Arachis genomics for peanut improvement. Biotechnol. Advs. 30(3):639-51.
Sharma, K.K. and Bhatnagar-Mathur, P. 2013. Genetic improvement of groundnut for drought and insect resistance. Plant Biotechnol. 11(8):1076-1091.
Songsri, P., Jogloy, S., Vorasoot, N., Kesmala, T., Holbrook, C.C. and Patanothai, A. 2013. Association of root, canopy, and yield traits with water use efficiency of peanut under different soil moisture conditions. Aust. J. Crop Sci. 7(7):948-957.
Sravanti, K., Ram Reddy, V., Mamatha, K., Navatha, N., Shankar, M., Vanisri, S. and Malla Reddy, M. 2024. Evaluation and characterization of groundnut (Arachis hypogaea L.) germplasm lines following DUS guidelines. J. Exp. Agric. Int. 46(12):889-894.
Sujay, V., Gowda, M.V.C., Pandey, M.K., Bhat, R.S., Khedikar, Y.P. and Varshney, R.K. 2018. Molecular breeding strategies to develop groundnut varieties with improved disease resistance and oil quality traits. Front. Plant Sci. 9:2062.
Upadhyaya, H.D., Reddy, L.J., Gowda, C.L.L. and Singh, S. 2012. Phenotypic diversity in peanut (Arachis hypogaea L.) core collection assessed by morphological and agronomic evaluations. Crop Sci. 52(2):541-550.
Upadhyaya, H.D., Ortiz, R. and Bramel, P.J. 2005. Development of a groundnut core collection using taxonomic, geographical and morphological descriptors. Genet. Resour. Crop Evol. 52:1–10.
Yadav, V.K. and Singh, I.S. 2010. Comparative evaluation of maize inbred lines (Zea mays L.) according to DUS testing using morphological, physiological and molecular markers. Agric. Sci. 1(3):131-142.
Yami, A.S. and Abtew, W.G. 2025. Assessment of genetic variability for yield and yield-contributing traits in groundnut (Arachis hypogaea L.) genotypes. J. Food Qual. 1:14.
-
Download