OPTIMIZATION OF REGENERATION PROTOCOL OF TOMATOES

  • K.T. Akter Bangladesh Institute of Nuclear Agriculture

    S. Tasmin Bangladesh Institute of Nuclear Agriculture

    S. Yeasmin Bangladesh Agricultural Research Institute

    M.R. Islam Bangladesh Institute of Nuclear Agriculture

    M.S. Alam Bangladesh Institute of Nuclear Agriculture

    M.N.H. Mehedi Patuakhali Science and Technology University

Abstract

Tomato (Solanum lycopersicon) is a commercially important, nutrient-rich vegetable crop that faces significant yield challenges due to climate variability. To address these challenges and meet growing consumer demands, the development of new cultivars through in vitro mutagenesis has emerged as a promising approach for breeders. Therefore, this study aimed to optimize an in vitro regeneration system for BINA developed tomato varieties through indirect tissue culture technology, which is crucial step for successful in vitro mutagenesis for inducing different stress tolerance. The regeneration potential of 8-day-old cotyledonary leaves was evaluated in three popular tomato varieties, namely Binatomato-11, Binatomato-12, and Binatomato-13. Emphasis was given on utilizing minimal resources to develop a cost-effective protocol, where BAP, IAA, and IBA were used as plant growth regulators. Results revealed that Binatomato-11 showed superior performance, with the highest callus induction frequency(65%), shoot initiation frequency (56.0 %). longest shoot (13.6 cm) and optimal shoot formation under the PGR combinations of 2.5 mgL-1 + 0.5 mgL-1, whereas the lowest performances were observed in Binatomato-12. Moreover, the regenerated shoots from the aforementioned combinations Binatomato-11 demonstrated the highest root initiation frequency (63.0 %) and the longest root length (15.5 cm) compared to other genotypes and combinations of growth regulators. These findings highlighted the genotype-specific response in tomato regeneration and the importance of an optimized protocol suited for specific varieties. The results open the way for efficient tissue culture-based improvement and future mutagenesis studies to develop tomato varieties in Bangladesh.

References

Abbasi, B.H., Rashid, A., Khan, M.A., Ali, M., Shinwari, Z.K., Ahmad, N. and Mahmood, T. 2011. In vitro plant regeneration in Sinapis Alba and evaluation of its radical scavenging activity. Pak. J. Bot. 43: 21-27.

Ahmad, N., Bin, G.H., Fazal, B.H., Abbasi., Chun-Zhao, L., Mahmood, T. and Shinwari, Z.K. 2011. Feasible plant regeneration in black pepper from petiole explants. J. Medic. Plants Res. 5(18): 4590-4595.

Alatar, A.A., Mohammad, F., Eslam, M.A., Tomas, C., Quaiser, S., Saad, B.J., Mohamed, A.E. and Abdulaziz, A.A. 2017. Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods. Saudi J. Biol. Sci. 24: 1430-1436.

Aneta, G., Katarzyna, H.K., Tomasz, K. and Andrzej, K.K. 2016. Efficient in Vitro callus induction and plant regeneration protocol for different polish tomato cultivars. Not Bot Horti Agrobo. 44(2): 452-458. doi:10.15835/nbha44210530.

Annonymous, 2024a. Tomatoes in Bangladesh from https://oec.world/en/profile/bilateral-product/tomatoes/reporter/bgd.

Annonymous, 2024b. Global production of vegetables in 2022, by type from https://www.statista.com/statistics/264065/global-production-of-vegetables-by-type/.

Arikita, F.N., Mariana, S.A., Danielle, C.S., Maísa, S.P., Antonio, F. and Lázaro, E.P.P. 2013. Novel natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii. Plant Sci. 199-200: 121-130. doi: 10.1016/j.plantsci.2012.11.005.

Arulananthu, G., Shreedhar, G.B. and Ramesh, N. 2019. Callus induction and in-vitro regeneration of tomato (Lycopersicon esculentum mill.). Res. J. Life Sci. bioinform., Pharmaceuti. Chem. Sci. 5(3). 491.

Baye, E., Matewos, T. and Derbew, B. 2020. Optimization of in vitro rooting protocol for tomato (Lycopersicon esculentum mill.) varieties. J. Appl. Nat. Sci.. 12(3): 365 – 371.https://doi.org/10.31018/jans.v12i3.2223.

Bhatia, P., Ashwath, N., Senaratna, T. and David, M. 2004.Tissue culture studies of tomato (Lycopersicon esculentum). Review of Plant Biotechnology and Applied Genetics. Plant Cell, Tissue and Organ Culture: 78: 1–21.

Brichkova, G.G., Maneshina, T.V. and Karte, N.A. 2002. Optimization of the nutrient medium for effective regeneration of tomatoes (Lycopersicon esculentum Mill.) in vitro. Vestsi-Natsyyanal'nai-Akademii-Navuk-Belarusi.-Seryya-Biyalagichnykh- Navuk. 2: 47-52. (CAB Abst. 2002/08-2003/10).

Cruz-Mendı´vil, A., Rivera-Lo´pez, J., Germa´n-Ba´ez, L.J., Lo´pez-Meyer, M., Herna´ndez-Verdugo, S., Lo´pez-Valenzuela, J.A., Reyes-Moreno, C. and Angel Valdez-Ortiz. 2011. A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. Micro-Tom from leaf explants. HORTSCIENCE. 46(12): 1655–1660. doiI: 10.21273/HORTSCI.46.12.1655.

Datta, A. 2015. Transgenic tomato (S. lycopersicum Mill.) regeneration by comparing different transformation techniques. A Dissertation Submitted to BRAC University in Partial Fulfillments of the Requirements for the Master of Science in Biotechnology, BRAC University, Bangladesh. 106-118. http://hdl.handle.net/10361/4524.

Devi, R., Dhaliwal, M.S., Kaur, A. and Gosal, S.S. 2008. Effect of growth regulators on in vitro morphogenic response of tomato. Indian J. Biotechnol. 7: 526-530.

Ellendula, R., Narra, M., Kota, S., Kalva, B., Velivela, Y., Savitikadi, P. and Allini, V.R. 2016. An efficient and high frequency regeneration protocol in two cultivars of Capsicum annuum. L cvs. G3 and G4. Int. J. Current Biotechnol. 4, 1–8.

Fan, M., Xu, C., Xu, K. and Hu, Y. 2012. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 22: 1169–1180.

Gerszberg, A., Katarzyna, H.K., Tomasz, K. and Andrzej, K.K. 2016. Efficient in Vitro callus induction and plant regeneration protocol for different polish tomato cultivars. Not. Bot. Horti. Agrobo. 44(2):452-458. Doi.10.15835/nbha44210530.

Harish, M.C., Rajeevkumar, S. and Sathishkumar, R. 2010. Efficient in vitro callus induction and regeneration of different tomato cultivars of India. Asian J. Biotechnol. 2(3): 178-184.

Hussain, A., Qarshi, I.A., Nazir, H., Ullah, I., Rashid, M. and Shinwari, Z.K. 2013. In vitro callogenesis and organogenesis in taxus wallichiana zucc. The Himalayan Yew. Pak. J. Bot. 45(5): 1755-1759.

Iftikhar, A., Qureshi, R., Munira, M., Shabbir, G., Hussain, M. and Khan, M.A. 2015. In vitro microporpgation of Solanum villosum-a potential alternative food plant. Pak. J. Bot. 47: 1495–1500.

Ikeuchi, M., Sugimoto, K. and Iwase, A. 2013. Plant Callus: Mechanisms of induction and repression. Plant Cell. 25: 3159–3173.

Ishfaq, M., Idrees, A.N., Nasir, M. and Muhammad, S. 2012. In vitro induction of mutation in tomato (Lycopersicon esculentum l.) Cv. Roma by using chemical mutagens. Pak. J. Bot. 44: 311-314.

Jain, S.M. 2010. Mutagenesis in crop improvement under the climate change. Romanian Biotechnological Letters. 15(2): 88-106.

Jamous, F. and Hassan, A. 2015. In vitro regeneration of tomato (Lycopersicon esculentum Mill). Plant Cell Biotechnol. Molec. Biol. 16 (3&4): 181-190.

Jehan, S. and Hassanein, A.M. 2013. Hormonal requirements trigger different organogenic pathways. Am. J. Plant Sci. 4 (11): 171-179.

Karim, M.A. and Kayum, M.A. 2007. In vitro regeneration of tomato plant from leaf and internode segments. J. Bangladesh Agril. Univ. 5(2): 213-216.

Khan, M.A., Abbasi, B.H. and Shinwari, Z.K. 2014. Thidiazuron enhanced regeneration and silymarin content in Silybum marianum L. Pak. J. Bot. 46(1): 185-190.

Kumar, S., Jindal, S. K., Sarao, N. K. and Dhaliwal, M. S. 2017. Development of an efficient in vitro regeneration protocol in tomato (Solanum lycopersicum L.). Agric Res J. 54 (4): 475-479. https://doi.org/10.5958/2395-146x.2017.00091.6.

Lercari, B., Moscatelli, S., Ghirarlli, E. and Niceforo, R. 1999. Photomorphogenic control of shoot regeneration from etiolated and light-grown hypocotyls of tomato. Plant Sci. 140(1): 53-62. doi: 10.1016/S0168-9452(98)00209-X.

Lijana, K.G., Mitrev, S., Fidanka, T. and Mite, L. 2012. Micropropagation of potato Solanum tuberosum L. Electronic J. Bot. 8: 45–49.

Lima J.E., Benedito V.A., Figueira, A. and Peres, L.E.P. 2009. Callus, shoot and hairy root formation In vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. Plant Cell Rep. 28: 1169-1177.

Liza, L.N., Nasar, A.N.M., Zinnah, K.M.A., Chowdhury M.A.N. and Ashrafuzzaman, M. 2013. In vitro growth media effect for regeneration of tomato (Lycopersicon esculentum) and evaluation of the salt tolerance activity of callus. J. Agric.Sustain. 3: 132-143.

Mohamed, A.N., Ismail, M.R. and Rahman, M.H. 2010. In vitro response from cotyledon and hypocotyls explants in tomato by inducing 6-benzylaminopurine. Afr. J. Biotechnol. 9: 4802-4807.

Mukta, F.A. 2014. Study of in vitro regeneration and transformation parameters for the development of transgenic Tomato (S. Lycopersicon L.). A Dissertation Submitted To BRAC University in Partial Fulfilment of the Requirements for the Degree of Master of Science in Biotechnology. 62-75. http://hdl.handle.net/10361/3776.

Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum. 15(3).

Nadia, M.M., Nada, H., Salah, E.A.K. and Abdelfattah, B. 2017. Differential in vitro direct regeneration of tomato genotypes on various combinations of growth regulators. Biotechnology.16: 155-164.

Osman, M.G., Elhadi, E.A. and Khalafalla, M.M. 2010. Callus formation and organogenesis of tomato (Lycopersicon esculentum Mill, C.V. Omdurman) induced by thidiazuron. Afr. J. Biotechnol. 9(28): 4407-4413.

Pal, S.P., Alam, I., Anisuzzaman, M., Sarker, K.K., Sharmin, S.A. and Alam, M.F. 2007. Indirect organogenesis in summer squash (Cucurbita pepo l.). Turk. J. Agric. For. 31: 63-70.

Praveen, M. and Rama, S.N. 2011. Effect of genotype, explant source and medium on in vitro regeneration of tomato. International J. Genet. Mole. Bio. 3(3): 45-50.

Pulido, C.M., Harry, I.S. and Thorpe, T.A. 1992. Optimization of bud induction in cotyledonary explants of Pinus canariensis . Plant Cell Tiss Organ Cult. 29: 247–255. https://doi.org/10.1007/BF00034360.

R Core Team. 2024. A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org.

Raza, M.A., Nawaz, A., Alim., Zaynab, M., Muntha, S.T., Zaidi, S.H., Khan, A.R. and Zheng, X.L. 2019. In-vitro regeneration and development for the conservation and propagation of tomato plant (Solanum lycopersicum) and currant tomato (S. Pimpinellifolium) from two different explants. Applied ecology and environmental research. 18(1): 879-888. doi: http://dx.doi.org/10.15666/aeer/1801_879888.

Robinson, J.P. and Saranya, S. 2013. An improved method for the in vitro propagation of Solanum melongena L. Int. J. Curr. Microbiol. App. Sci. 2(6): 299-306.

Sabir, H.S., Shaukat, A., Sohail, A.J., Jalal-Ud–Din. and Ghulam, A.A. 2014. Assessment of silver nitrate on callus induction and in vitro shoot regeneration in tomato (Solanum lycopersicum mill). Pak. J. Bot. 46(6): 2163-2172.

Sohail, A.J., Shah, S.H., Ali, S. and Ali, G.M. 2015. The effect of plant growth regulators on callus induction and somatic embryogenesis of hybrid tomato. Pak. J. Bot. 47(5): 1671-1677.

Titeli, V.S., Zafeiriou, I., Laskaridou, A., Menexes, G., Madesis, P., Stavridou, E. and Nianiou-Obeidat, I. 2021. Development of a simple and low-resource regeneration system of two greek tomato varieties. Agriculture. 11: 412. https://doi.org/10.3390/agriculture11050412.

Trujillo-Moya, C. and Gisbert, C. 2012. The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell Tiss. Org. Cult. 111: 41-48.

Vanegas, P.E., A. Cruz-Herna´ndez, M.E. Valverde, and O. Paredes-Lo´pez. 2002. Plant regeneration via organogenesis in marigold. Plant Cell Tissue Organ Cult. 69: 279-283.

Venkatesh, J. and Park, S.W. 2012. Plastid genetic engineering in Solanaceae. Protoplasma. 249: 981-999.

Vikram, G., Madhusudhan, K., Srikanth, K., Laxminarasu, M. and Swamy, N.R. 2011. Effect of plant growth regulators on in vitro organogenesis in cultivated tomato (Solanum lycopersicum L.). J. Res. Bio. 4: 263-268.

Wayase, U.R. and Shitole, M.G. 2014. Effect of plant growth regulators and organogenesis in tomato (Lycopersicon esculentum Mill.) cv. Dhanashri. International J. Pure Appl. Sci. Technol. 2: 65-71.

Zhang, W., Hou, L., Zhao, H. and Li, M. 2012. Factors affecting regeneration of tomato cotyledons. Bioscience Methods. 4: 27-32.

Zhao, H., Wang, X.X., Du, Y., Zhu, D., Guo, Y., Gao, J., Li, F. and Snyder, J.C. 2014. Haploid induction via in vitro gynogenesis in tomato (Solanum lycopersicum L.). J. Integ. Agri. 13(10): 2122-2131. doi: 10.1016/S2095-3119(13)60672-3.

Section
Research Article